Multisensor Super Resolution Using Directionally-Adaptive Regularization for UAV Images
نویسندگان
چکیده
In various unmanned aerial vehicle (UAV) imaging applications, the multisensor super-resolution (SR) technique has become a chronic problem and attracted increasing attention. Multisensor SR algorithms utilize multispectral low-resolution (LR) images to make a higher resolution (HR) image to improve the performance of the UAV imaging system. The primary objective of the paper is to develop a multisensor SR method based on the existing multispectral imaging framework instead of using additional sensors. In order to restore image details without noise amplification or unnatural post-processing artifacts, this paper presents an improved regularized SR algorithm by combining the directionally-adaptive constraints and multiscale non-local means (NLM) filter. As a result, the proposed method can overcome the physical limitation of multispectral sensors by estimating the color HR image from a set of multispectral LR images using intensity-hue-saturation (IHS) image fusion. Experimental results show that the proposed method provides better SR results than existing state-of-the-art SR methods in the sense of objective measures.
منابع مشابه
Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملSuper-resolution of Defocus Blurred Images
Super-resolution is a process that combines information from some low-resolution images in order to produce an image with higher resolution. In most of the previous related work, the blurriness that is associated with low resolution images is assumed to be due to the integral effect of the acquisition device’s image sensor. However, in practice there are other sources of blurriness as well, inc...
متن کاملMulti-frame Super Resolution for Improving Vehicle Licence Plate Recognition
License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...
متن کاملA robust multiframe super-resolution algorithm based on half-quadratic estimation with modified BTV regularization
a r t i c l e i n f o a b s t r a c t Multiframe image super-resolution is a technique to reconstruct a high-resolution image by fusing a sequence of low-resolution images of the same scene. In this paper, we propose a new multiframe image super-resolution algorithm built on the regularization framework. The objective functional to be minimized for the regularization framework consists of a fid...
متن کاملPOCS Based Super-Resolution Image Reconstruction Using an Adaptive Regularization Parameter
Crucial information barely visible to the human eye is often embedded in a series of low-resolution images taken of the same scene. Super-resolution enables the extraction of this information by reconstructing a single image, at a high resolution than is present in any of the individual images. This is particularly useful in forensic imaging, where the extraction of minute details in an image c...
متن کامل